Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bikshandarkoil R. Srinivasan,^a* Ashish R. Naik,^a Christian Näther^b and Wolfgang Bensch^b

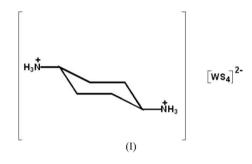
^aDepartment of Chemistry, Goa University PO, Goa 403 206, India, and ^bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

Correspondence e-mail: srini@unigoa.ac.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.023 wR factor = 0.052 Data-to-parameter ratio = 32.0

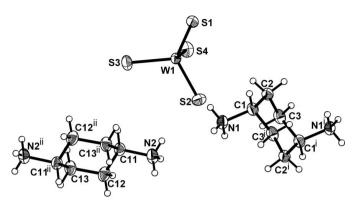
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


© 2006 International Union of Crystallography All rights reserved

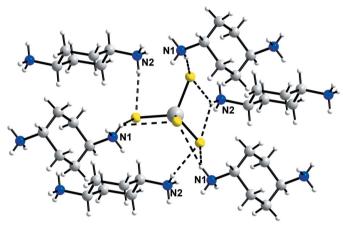
trans-Cyclohexane-1,4-diammonium tetrathiotungstate(VI)

The structure of the title complex, $(C_6H_{16}N_2)[WS_4]$, consists of a tetrahedral $[WS_4]^{2-}$ dianion situated in a general position and two crystallographically independent *trans*-cyclohexane-1,4-diammonium cations located on centres of inversion. The anions are linked to the organic ammonium cations *via* N-H···S hydrogen bonds, resulting in the formation of alternating layers of cations and anions.

Comment


As part of an ongoing research programme, we are investigating the synthesis and structural characterization of organic ammonium tetrathiotungstates (Srinivasan *et al.*, 2005; Srinivasan, Näther *et al.*, 2006*a,b*). In the present report, we describe the structure of the title compound, (I), which is isostructural with the corresponding Mo compound, $(C_6H_{16}N_2)[MOS_4]$ (Srinivasan *et al.*, 2006).

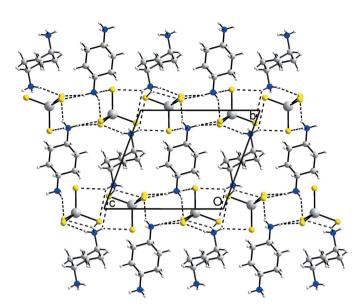
The structure of (I) consists of a tetrahedral $[WS_4]^{2-}$ dianion situated in a general position and two crystallographically independent *trans*-cyclohexane-1,4-diammonium cations located on centres of inversion (Fig. 1). The cations adopt a chair conformation and their geometric parameters are in agreement with those in $(C_6H_{16}N_2)[MOS_4]$ (Srinivasan, Näther & Bensch, 2006). The WS₄ tetrahedron is slightly distorted, with S–W–S angles between 107.06 (4) and 110.84 (5)° and W–S bond lengths ranging from 2.1834 (12) to 2.2001 (11) Å. These values are in good agreement with literature data (Srinivasan, Näther *et al.*, 2006*a*).


A total of ten short intermolecular $S \cdots H$ contacts ranging from 2.47 to 2.95 Å are observed, all of which are less than the sum of their van der Waals radii (Bondi, 1964); the separation of 2.95 Å is indicative of a weak hydrogen bond (Table 2). Each $[WS_4]^{2-}$ anion is linked to six different cations through nine $N-H\cdots S$ interactions (Fig. 2). All H atoms attached to the N atoms are involved in these hydrogen bonds, three of which are bifurcated. Each crystallographically independent cation is hydrogen-bonded to six different $[WS_4]^{2-}$ anions. The shortest W-S distance is observed for S4, which is involved in Received 3 November 2006 Accepted 17 November 2006

metal-organic papers

Figure 1

The structure of the constituent ions of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 2 - x, 3 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z.]


Figure 2

A view of the surroundings of the $[WS_4]^{2-}$ anion, showing the linking of each anion to six different cations via nine N-H···S hydrogen bonds (dashed lines).

two bifurcated hydrogen bonds, while all other S atoms make at least one singly shared hydrogen bond in addition to bifurcated hydrogen bonds. The observed W-S bond lengths can be attributed to the different numbers and strengths of hydrogen bonds between the H atoms of the cation and the S atoms. The W-S bond lengths tend to be longer when the S···H contacts are shorter and the N–H···S angles are more linear. As a result of the hydrogen-bonding interactions in (I), alternating layers of cations and anions are formed parallel to the (100) plane (Fig. 3).

Experimental

To ammonium tetrathiotungstate (348 mg, 1 mmol) in distilled water (15 ml), a few drops of aqueous ammonia were added and the solution was filtered. To the clear yellow filtrate trans-cyclohexane-1,4amine (114 mg) was added and the reaction mixture was left aside for crystallization. After 1 d, yellow crystals of (I) separated slowly. The crystals were filtered off, washed with ice-cold water (2 ml) followed by propan-2-ol (10 ml) and diethyl ether (10 ml), and air-dried (yield 70%). The compound is air-stable and analyzed satisfactorily.

Figure 3

A packing diagram for (I), viewed along the *a* axis, showing the formation of alternating layers. N-H···S hydrogen bonds are shown as dashed lines.

Crystal data

$(C_6H_{16}N_2)[WS_4]$	$V = 646.22 (17) \text{ Å}^3$
$M_r = 428.30$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 2.201 \text{ Mg m}^{-3}$
a = 7.0354 (9) Å	Mo $K\alpha$ radiation
b = 9.6783 (14) Å	$\mu = 9.55 \text{ mm}^{-1}$
c = 10.5523 (19) Å	T = 293 (2) K
$\alpha = 108.672 \ (14)^{\circ}$	Block, yellow
$\beta = 92.673 \ (14)^{\circ}$	$0.11 \times 0.09 \times 0.07~\mathrm{mm}$
$\gamma = 106.228 \ (12)^{\circ}$	

Data collection

Stoe AED-II four-circle 3776 independent reflections 3105 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.031$ ω/θ scans $\theta_{\rm max} = 30.0^{\circ}$ Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) 4 standard reflections $T_{\rm min} = 0.365, T_{\rm max} = 0.502$ frequency: 120 min 4059 measured reflections intensity decay: none

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.023$	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$
$wR(F^2) = 0.052$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.002$
3776 reflections	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
118 parameters	$\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

W1-S4	2.1834 (12)	W1-S3	2.2001 (11)
W1-S2	2.1913 (11)	N1-C1	1.514 (5)
W1-S1	2.1913 (10)	N2-C11	1.496 (5)
S4-W1-S2	109.45 (5)	\$4-W1-\$3	110.84 (5)
S4-W1-S1	110.01 (4)	S2-W1-S3	110.55 (5)
S2-W1-S1	107.06 (4)	S1-W1-S3	108.84 (4)

Table 2		
Hydrogen-bond	geometry (Å,	, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot$	·A
$N1-H1N1\cdots S3^{i}$	0.89	2.67	3.372 (4)	137	-
$N1 - H1N1 \cdots S4^{i}$	0.89	2.95	3.459 (3)	118	
$N1 - H2N1 \cdot \cdot \cdot S1^{ii}$	0.89	2.53	3.399 (4)	167	
$N1 - H3N1 \cdot \cdot \cdot S4$	0.89	2.78	3.600 (4)	155	
$N1-H3N1\cdots S2$	0.89	2.81	3.357 (4)	121	
$N2-H1N2 \cdot \cdot \cdot S2^{iii}$	0.89	2.63	3.349 (4)	139	
$N2-H1N2\cdots S1^{iii}$	0.89	2.72	3.424 (4)	137	
$N2-H2N2\cdots S3^{ii}$	0.89	2.53	3.412 (4)	170	
$N2-H3N2 \cdot \cdot \cdot S2$	0.89	2.47	3.289 (4)	153	
$C3-H3A\cdots S1^{ii}$	0.97	2.95	3.810 (4)	148	
Symmetry codes:	(i) - <i>x</i> +	1, -y + 2, -z +	+ 2; (ii) $x +$	-1, y, z; ((iii)

-x + 1, -y + 2, -z + 1.

C- and N-bound H atoms were located in a difference map but they were placed in idealized positions, with C-H = 0.97 Å and N-H = 0.89 Å, and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm N})$. There were practically no differences between the calculated positions and those found in a difference map.

Data collection: *DIF4* (Stoe & Cie, 1998); cell refinement: *DIF4*; data reduction: *REDU4* (Stoe & Cie, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

DIAMOND (Brandenburg, 1999); software used to prepare material for publication: *CIFTAB* in *SHELXTL* (Bruker, 1998).

This work was supported by the Department of Science and Technology (DST), New Delhi, under grant No. SR/S1/IC-41/ 2003. WB and BRS thank the DST and the Deutscher Akademischer Austauschdienst (DAAD), Bonn, for the sanction of a DST-DAAD (PPP) project.

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Brandenburg, K. (1999). *DIAMOND*. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Srinivasan, B. R., Dhuri, S. N., Poisot, M., Näther, C. & Bensch, W. (2005). Z. Anorg. Allg. Chem. 631, 1087–1094.
- Srinivasan, B. R., Näther, C. & Bensch, W. (2006). Acta Cryst. C62, m98–m101.Srinivasan, B. R., Näther, C., Dhuri, S. N. & Bensch, W. (2006a). Monatsh. Chem. 137, 397–411.
- Srinivasan, B. R., Näther, C., Dhuri, S. N. & Bensch, W. (2006b). Polyhedron, 25, 3269–3277.
- Stoe & Cie (1998). DIF4 (Version 7.09X/DOS), REDU4 (Version 7.03) and X-SHAPE (Version 1.03). Stoe & Cie, Darmstadt, Germany.